PROBABILISTIC SEMANTIC MAPS OF CAUSATION AND CAUSALITY

A study based on a multilingual parallel corpus

Natalia Levshina
F.R.S.-FNRS, Université catholique de Louvain
Outline

1. Quantitative typological Cognitive Semantics
2. Data: ParTy corpus
3. Method: Probabilistic semantic maps
4. Case studies
 - causative constructions
 - causal connectives
5. Conclusions
Aims of the study

• Traditional Cognitive Semantics: introspective, qualitative, mostly based on English

• The main aim of this study is to promote a different type of Cognitive Semantics: corpus-based, quantitative AND typological
Quantitative Typological CogSem

- Which conceptual dimensions and structures are the most common typologically, and which are language-specific (language family- or areally specific)?
 - For a given constructional type (e.g. adpositions of spatial relationships)
 - Across different constructions (e.g. adpositions and verbs)

- These dimensions and structures can emerge automatically from parallel corpora.
Object of the study

<table>
<thead>
<tr>
<th>Type of constructions</th>
<th>Causation</th>
<th>Causality</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbal causative constructions, e.g. X breaks Y, X makes Y do Z</td>
<td>causal connectives, e.g. because, therefore</td>
<td></td>
</tr>
<tr>
<td>Construal</td>
<td>Energy transfer from Causer to Causee, typically when the Causer overrides the Causee’s intrinsic tendency (Talmy 2000)</td>
<td>Relationship between two propositions, one expressing the cause and the other the effect</td>
</tr>
</tbody>
</table>
Outline

1. Quantitative typological Cognitive Semantics
2. Data: ParTy corpus
3. Method: Probabilistic semantic maps
4. Case studies
 - causative constructions
 - causal connectives
5. Conclusions
ParTy corpus

- a Parallel corpus for Typology
- subtitles of films and TED talks
- mostly European languages, but also other major languages (Chinese, Turkish, Indonesian, etc.)
- all languages aligned with English
- downloadable files at
 www.natalialevshina.com/corpus.html
Why subtitles?

Based on the frequencies of 3-grams (Levshina, Submitted)
Data used in the case studies

Films

TED talks

- Ken Robinson: *Do schools kill creativity?*
- Elizabeth Gilbert: *Your elusive creative genius*
- Amy Cuddy: *Your body language shapes who you are*
- Leslie Morgan Steiner: *Why domestic violence victims don’t leave*
- Dan Gilbert: *The psychology of your future self*
Languages

<table>
<thead>
<tr>
<th>Language</th>
<th>Genus</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td>Chinese</td>
<td>Sino-Tibetan</td>
</tr>
<tr>
<td>Finnish</td>
<td>Finnic</td>
<td>Uralic</td>
</tr>
<tr>
<td>French</td>
<td>Romance</td>
<td>Indo-European</td>
</tr>
<tr>
<td>Hebrew</td>
<td>Semitic</td>
<td>Afro-Asiatic</td>
</tr>
<tr>
<td>Indonesian</td>
<td>Malayo-Sumbawan</td>
<td>Austronesian</td>
</tr>
<tr>
<td>Japanese</td>
<td>Japanese</td>
<td>Japanese</td>
</tr>
<tr>
<td>Russian</td>
<td>Slavic</td>
<td>Indo-European</td>
</tr>
<tr>
<td>Thai</td>
<td>Kam-Tai</td>
<td>Tai-Kadai</td>
</tr>
<tr>
<td>Turkish</td>
<td>Turkic</td>
<td>Altaic</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>Viet-Muong</td>
<td>Austro-Asiatic</td>
</tr>
</tbody>
</table>
Outline

1. Quantitative typological Cognitive Semantics
2. Data: ParTy corpus
3. Method: Probabilistic semantic maps
4. Case studies
 - causative constructions
 - causal connectives
5. Conclusions
Probabilistic semantic maps

• A tool used in typology (Majid et al. 2008; Wälchli 2010; Wälchli & Cysouw 2012; Levshina Forthc.) for different purposes:
 • Induction of cross-linguistic categories (e.g. thematic roles in Hartmann et al. 2014)
 • Cross-linguistic comparison of related constructions (e.g. degrees of grammaticalization of Romance analytic causatives in Levshina, Forthc.)
 • Induction of cross-linguistic semantic dimensions (e.g. categorization of cutting and breaking events in Majid et al. 2008)
Probabilistic semantic maps

• A tool used in typology (Majid et al. 2008; Wälchli 2010; Wälchli & Cysouw 2012; Levshina Forthc.) for different purposes:
 • Induction of cross-linguistic categories (e.g. thematic roles in Hartmann et al. 2014)
 • Cross-linguistic comparison of related constructions (e.g. degrees of grammaticalization of Romance analytic causatives in Levshina, Forthc.)
 • Induction of cross-linguistic semantic dimensions (e.g. categorization of cutting and breaking events in Majid et al. 2008)

Here: data from a parallel corpus!
Algorithm for MDS: Step 1

1. Collect the data (fictitious example)

<table>
<thead>
<tr>
<th></th>
<th>Lang1</th>
<th>Lang2</th>
<th>Lang3</th>
<th>Lang4</th>
<th>Lang5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sit1</td>
<td>bla</td>
<td>qu</td>
<td>da</td>
<td>nina</td>
<td>haha</td>
</tr>
<tr>
<td>Sit2</td>
<td>bla</td>
<td>qu</td>
<td>da</td>
<td>nana</td>
<td>hihi</td>
</tr>
<tr>
<td>Sit3</td>
<td>bla</td>
<td>qa</td>
<td>ta</td>
<td>nina</td>
<td>hehe</td>
</tr>
</tbody>
</table>
Algorithm for MDS: Step 1

1. Collect the data (fictitious example)

<table>
<thead>
<tr>
<th></th>
<th>Lang1</th>
<th>Lang2</th>
<th>Lang3</th>
<th>Lang4</th>
<th>Lang5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sit1</td>
<td>bla</td>
<td>qu</td>
<td>da</td>
<td>nina</td>
<td>haha</td>
</tr>
<tr>
<td>Sit2</td>
<td>bla</td>
<td>qu</td>
<td>da</td>
<td>nana</td>
<td>hihi</td>
</tr>
<tr>
<td>Sit3</td>
<td>bla</td>
<td>qa</td>
<td>ta</td>
<td>nina</td>
<td>hehe</td>
</tr>
</tbody>
</table>

Comparative concepts (cf. Haspelmath 2010)
Algorithm for MDS: Step 2

2. Compute the distances between the situations (rows)

<table>
<thead>
<tr>
<th></th>
<th>Lang1</th>
<th>Lang2</th>
<th>Lang3</th>
<th>Lang4</th>
<th>Lang5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sit1</td>
<td>bla</td>
<td>qu</td>
<td>da</td>
<td>nina</td>
<td>haha</td>
</tr>
<tr>
<td>Sit2</td>
<td>bla</td>
<td>qu</td>
<td>da</td>
<td>nana</td>
<td>hihi</td>
</tr>
<tr>
<td>Sit3</td>
<td>bla</td>
<td>qa</td>
<td>ta</td>
<td>nina</td>
<td>hehe</td>
</tr>
</tbody>
</table>

Overlap 1,2 = 3/5 = 0.6
Overlap 1,3 = 2/5 = 0.4
Overlap 2,3 = 1/5 = 0.2

Distance = 1 – overlap
Algorithm for MDS: Step 3

3. Perform MDS
Outline

1. Quantitative typological Cognitive Semantics
2. Data: ParTy corpus
3. Method: Probabilistic semantic maps
4. Case studies
 - causative constructions
 - causal connectives
5. Conclusions
Causation in CogSem

- Talmy (2000: Ch. 8) makes a number of distinctions:
 - Continuous vs. discontinuous causation chain:
 - I slid the plate across the table by pushing on it with a stick.
 - I made the plate slide across the table by throwing a stick at it.
 - Extended vs. onset causation
 - I pushed the box across the ice, going along with it.
 - I pushed the box off across the ice, and stayed put.
 - Effectuating causation vs. enabling causation (i.e. making vs. letting)
 - Presence of self-directedness in mid-causal chain (i.e. the Causee’s control)
 - I threw him downstairs.
 - I sent him downstairs.
The role of the Causer

- Author causative (non-intended): I broke the vase in rolling a ball into it.
- Agent causative (intended): I broke the vase by rolling a ball into it.
The role of the Causer

• Author causative (non-intended): *I broke the vase in rolling a ball into it.*
• Agent causative (intended): *I broke the vase by rolling a ball into it.*

OK, but which distinctions are the most important cross-linguistically in causative constructions?
Data

- 344 causative situations from the English subtitles
- Examples:
 - *It is not nice to throw people!*
 - *Now, you made him mad.*
 - *You almost set me on fire!*
 - *You had us worried sick.*
 - *Ah, let me look at you.*
 - *Keep your arms in.*
Classification of constructions in translations

• Criterion: how the causing and caused events are expressed
 • Analytic causatives (two predicates, e.g. make X die)
 • Morphological (the causing event is expressed by a productive causative morpheme, e.g. Turkish öl-mek ‘to die’ - öl-dür-mek ‘to kill’)
 • Lexical (in one word, e.g. kill, break)

Based on Comrie 1981
Example

• Don't shoot, you'll **piss him off**.
 • French: *Ne tirez pas. Vous allez l'énerver.* (Lexical)
 • Turkish: *Ateş etme. Ateş etme. Onu kızdırıracaksın.*
 (Morphological, from *kızmek* ‘become angry’).
 • Vietnamese: *Đừng bắn. Cậu sẽ làm nó nổi điên đó.*
 (Analytic)
Interactive semantic map

http://www.natalialevshina.com/plots/bubblechart1.html
Interpretation

• Dimension 1: (In)directness of causation
 • Left: volitionality, control and animacy of the Causee, letting, longer causation chain, caused action rather than change of state
 • Right: non-volitionality, no control, inanimacy of the Causee, making, shorter causation chain, caused change of state

• Dimension 2: Intentionality of the Causer
 • Top: mostly Causers acting intentionally
 • Bottom: many Causers acting unintentionally (also animate)
Outline

1. Quantitative typological Cognitive Semantics
2. Data: ParTy corpus
3. Method: Probabilistic semantic maps
4. Case studies
 - causative constructions
 - causal connectives
5. Conclusions
Variation of causal connectives

- Cause – result – purpose
 - e.g. because – so, therefore – so that, in order to
- Degree of subjectivity
 - e.g. Dutch doordat < omdat < want
- Register/channel
 - e.g. Fr. parce que vs. car
- etc.

e.g. Schiffrin 1987; Sanders & Sweetser 2009; Degand et Fagard 2012; Zufferey & Cartoni 2012
Data

• All causal connectives extracted from the English subtitles (a closed list: because, so, therefore, since, etc.)
• In total, 205 instances
• Their correspondences were found in the other languages.
Example

• I can't stay with her anymore, because she doesn't exist.
 • French: Je ne peux plus rester, car elle n'existe pas.
 • Chinese: 我不能再陪着她 因为 她 早已不复存在
 • Finnish: En voi jäädä Malin luokse, koska häntä ei ole olemassa.
 • Russian: Я не могу с ней оставаться, потому что она не существует.
Semantic map of causal connectives
Semantic map of causal connectives
Interpretation of semantic map: Dimensions

- Most important: cause vs. result
- Less important: purpose vs. other types
- Even less: emphasis on the causal relationship vs. no emphasis
Outline

1. Quantitative typological Cognitive Semantics
2. Data: ParTy corpus
3. Method: Probabilistic semantic maps
4. Case studies
 - causative constructions
 - causal connectives
5. Conclusions
Conclusions

• At both constructional levels, the intentionality/control of the agent(s) represents a key distinction where the languages converge.
 • Language is anthropocentric.

• Hypothesis: we can expect to find this dimension in other constructions across different languages and at different levels of grammatical granularity.
 • Cf. cross-level studies by Degand (2001) and Stukker (2005) on Dutch causal and causative expressions.
Thanks!

The slides are available at
http://www.natalialevshina.com/presentations.html

natalevs@gmail.com
natalia.levshina@uclouvain.be