A Radically Data-Driven Construction Grammar:

English Constructions of Letting and Vector Space Models

Natalia Levshina
F.R.S. – FNRS
Université catholique de Louvain
Constructions of Letting

The professor let allowed permitted her students (to) use their course notes
Constructions of Letting

The professor let her students (to) use their course notes.
Constructions of Letting

The professor let allowed permitted her students (to) use their course notes

EFFECTED PREDICATE (Vinf)
Constructions of Letting

The professor let her students (to) use their course notes.

CAUSER

let
allowed
permitted

her
students

(to) use

their
course
notes
Constructions of Letting

The professor let allowed permitted her students (to) use their course notes.
The aims of the study

Top-down approach

• pinpoint contextual factors identified on the basis of previous research (+intuition) that can account for the speaker’s choice between the cx

• fit a multivariate model to test if these variables help predict the use of cxs
The aims of the study

Top-down approach

- pinpoint contextual factors identified on the basis of previous research (+intuition) that can account for the speaker’s choice between the cx
- fit a multivariate model to test if these variables help predict the use of cxs

Bottom-up approach

- classify the lexemes that fill in the constructional slots (Cr, Ce, Vinf) on the basis of their distributional properties (Semantic Vector Space models)
- test how well these classifications can predict the choice between *let*, *allow* and *permit*.
PREVIOUS SCHOLARSHIP
Iconicity

- Haiman (1983): the conceptual distance between the cause and the result corresponds to the formal distance between the causative auxiliary and the effected predicate.
Iconicity

- Haiman (1983): the conceptual distance between the cause and the result corresponds to the formal distance between the causative auxiliary and the effected predicate.
- Duffley (1992): *let* + bare Vinf expresses more tightly integrated events than *allow / permit* + *to*-Inf.
Iconicity

- Haiman (1983): the conceptual distance between the cause and the result corresponds to the formal distance between the causative auxiliary and the effected predicate.
- Duffley (1992): *let* + bare Vinf expresses more tightly integrated events than *allow / permit* + *to*-Inf.

Will this factor survive a quantitative test in a multifactorial model, which also contains other semantic, syntactic, collocational, stylistic and social variables?
DATA SET AND VARIABLES
Data set

• random samples of *let*, *allow* and *permit* + (...) + *(to)* Vinf from
 the BNC XML edition
Data set

• random samples of *let, allow* and *permit* + (...) + *(to)* Vinf from the BNC XML edition

• excluded:
 - spurious hits
 - passives
 - optatives, hortatives (*let’s go!* and other non-permissive uses of *let*)
Data set

- random samples of *let, allow* and *permit + (...) + (to) Vinf* from the BNC XML edition
- excluded:
 - spurious hits
 - passives
 - optatives, hortatives (*let’s go!* and other non-permissive uses of *let*)

882 exemplars × 3 constructions = 2646 observations, coded for 15 contextual variables
Conceptual integration

- **CeControl**: “X let/allowed/permitted Y (to) do Z, and Y did Z because (s)he chose to do so. “
 - “Yes”: *The professor allowed the students to use their course notes.*
 - “No”: *Let the baby sleep.*
Conceptual integration

- **CeControl**: “X let/allowed/permitted Y (to) do Z, and Y did Z because (s)he chose to do so.“
 - “Yes”: *The professor allowed the students to use their course notes.*
 - “No”: *Let the baby sleep.*

- **EPVal**: valency of the Infinitive (length of the causation chain)
 - Intransitive: *I let him go.*
 - Transitive: *You allowed me to release them.*
 - Passive Vinf: *You’ve let him be killed.*
Formal linguistic distance

- *Distance*: formal distance (in words) between Aux and (to)-Vinf

 Live and Let Die (Distance = 0)

 ... *to permit B., who was anxious to co-operate, to disclose them the documents*... (Distance = 6)
Cr and Ce semantics

- \textit{CrSem} and \textit{CeSem}: semantic class of the Causer/Causee
 - \textit{Anim}: animate nouns and pronouns
 - \textit{Mat}: material objects
 - \textit{Abstr}: abstract entities
Channel and domain

- **Channel**: channel of communication
 - spoken
 - written
- **Domain**: text domain
 - Imagery (fiction)
 - Educational/informative
 - Public (social, political, economic, institutional)
 - Other
Collocational fixation

• Measures of association between each Cx and Vinf:
 • Attraction (Schmid 2010)
 • Reliance (Schmid 2010)
 • Minimum sensitivity (cf. Wiechmann 2008)
 • ΔP (Ellis 2006)
 • log odds ratio
 • Collostructional strength (Stefanowitsch & Gries 2003, etc.)

Represent different relationships (symmetric and asymmetric, with and without contingency information, effect size and significance)
DIC criterion (MCMC glmm)
Minimum sensitivity

\[MS = \min(x, y), \text{ where} \]

- \(x \) is the frequency of the infinitive in the construction divided by the total frequency of the construction (i.e. Attraction)
- \(y \) is the frequency of the infinitive in the construction divided by the total frequency of the verb (i.e. Reliance)
Stylistic factor: horror aequi

- *Horror_aequi*: avoidance of repetition (cf. Brugman 1909; Rohdenburg 2003). Coded as “Yes” is there is another verb of letting in the left context in the same sentence.

Yet, *ITV regards its competition so seriously that it refuses even to allow Sky the traditional news access to its exclusive sponsored events or permit the EBU to pass on its pictures from events such as athletics' European Cup.*
Other factors

- **Morph**: TAM characteristics of the letting Auxiliary
- **Coref**: coreferentiality between Cr and other participants

 \[I \text{ have no patience with women who let themselves go. } \]

- **Possess**: possessive relationships between Cr and other participants (marked by a possessive marker)

 \[Let \text{ your letter express your personality. } \]

- **Polarity**:
 - Pos: positive
 - Neg: negative, e.g. \[I \text{ do not allow a woman to make a fool of me. } \]

- **Nchar**: length of the Vinf (in characters)
- **Vfreq**: frequency of the infinitive
FULL MCMC GLMM
The model

- Multinomial mixed model
- the response: the letting Cx (let, allow or permit)
- 15 fixed effects (the contextual variables)
- Vinf as random effects
- Bayesian approach, Markov Chain Monte Carlo method, R package MCMCglmm
- 40,000 iterations
- Accuracy: 0.704 (against the baseline of 0.33)
Fixed effects (a selection)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient (post. mean)</th>
<th>pMCMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance.allow</td>
<td>0.246</td>
<td>0.004</td>
</tr>
<tr>
<td>Distance.permit</td>
<td>0.533</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CeControl=Yes.allow</td>
<td>1.18</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CeControl=Yes.permit</td>
<td>1.396</td>
<td>< 0.001</td>
</tr>
<tr>
<td>MS.allow</td>
<td>-863.4</td>
<td>< 0.001</td>
</tr>
<tr>
<td>MS.permit</td>
<td>-4,679</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Channel=Written.allow</td>
<td>1.336</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Channel=Written.permit</td>
<td>4.03</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Nchar.allow</td>
<td>0.371</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Nchar.permit</td>
<td>0.475</td>
<td>0.001</td>
</tr>
<tr>
<td>CrSem=Abstr.allow</td>
<td>3.17</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CrSem=Abstr.permit</td>
<td>3.798</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
‘Harmonic alignment’

LET - ALLOW (/) PERMIT

formal linguistic distance

conceptual distance

social distance, formality

spatiotemporal distance between interlocutors

lack of collocational fixation

less cognitively salient Cr and Ce
‘Harmonic alignment’

- LET - ALLOW (/) PERMIT

- formal linguistic distance

- conceptual distance

- social distance, formality

- spatiotemporal distance between interlocutors

- lack of collocational fixation

- less cognitively salient Cr and Ce
‘Harmonic alignment’

- *LET* - *ALLOW* (/) *PERMIT*

 - formal linguistic distance
 - conceptual distance
 - social distance, formality

- spatiotemporal distance between interlocutors

- lack of collocational fixation

- less cognitively salient Cr and Ce
‘Harmonic alignment’

LET - ALLOW (/) PERMIT

- formal linguistic distance
- conceptual distance
- social distance, formality
- spatiotemporal distance between interlocutors

- lack of collocational fixation
- less cognitively salient Cr and Ce
‘Harmonic alignment’

LET - ALLOW (/) PERMIT

- formal linguistic distance
- conceptual distance
- social distance, formality
- spatiotemporal distance between interlocutors
- lack of collocational fixation

less cognitively salient Cr and Ce
‘Harmonic alignment’

LET - ALLOW (\/) PERMIT

- formal linguistic distance
- conceptual distance
- social distance, formality
- spatiotemporal distance between interlocutors
- lack of collocational fixation
- less cognitively salient Cr and Ce
BOTTOM-UP APPROACH: SVS CLASSES
Semantic Vector Spaces

• A popular method in distributional approaches to semantics: Lexemes or word forms are represented as vectors of weighted co-occurrence frequencies with contextual features.
Semantic Vector Spaces

• A popular method in distributional approaches to semantics: Lexemes or word forms are represented as vectors with weighted co-occurrence frequencies of contextual features.

• First implementation for CxGr studies on Dutch causative constructions in Levshina & Heylen (Forthc.).
 - We can use different SVS models of constructional collexemes (Cr, Ce and Vinf) to cluster the collexemes and see which classification helps us best predict the use of near-synonymous constructions.
Models for Cr and Ce

- Step 1. Create two lists of nouns that are used in the Cr and Ce slots in the entire data set.
Models for Cr and Ce

• Step 1. Create two lists of nouns that are used in the Cr and Ce slots in the entire data set.
• Step 2. Obtain co-occurrence frequencies of the nouns with 5000 most frequent lexemes in the BNC
 - BOW4: all words in the window 4 words on the left from the target noun and 4 on the right.
 - BOW15: the same, but the window is 15.
Models for Cr and Ce

• Step 1. Create two lists of nouns that are used in the Cr and Ce slots in the entire data set.
• Step 2. Obtain co-occurrence frequencies of the nouns with 5000 most frequent lexemes in the BNC
 - BOW4: all words in the window 4 words on the left from the target noun and 4 on the right.
 - BOW15: the same, but the window is 15.
• Step 3. Transform the co-occurrence frequencies into Positive Pointwise Mutual Information scores.
Models for Cr and Ce

• Step 1. Create two lists of nouns that are used in the Cr and Ce slots in the entire data set.
• Step 2. Obtain co-occurrence frequencies of the nouns with 5000 most frequent lexemes in the BNC
 - BOW4: all words in the window 4 words on the left from the target noun and 4 on the right.
 - BOW15: the same, but the window is 15.
• Step 3. Transform the co-occurrence frequencies into Positive Pointwise Mutual Information scores.
• Step 4. Compute the distances between all pairs of word vectors as $dist_{AB} = 1 - \cos(A, B)$.
Models for Cr and Ce

• Step 1. Create two lists of nouns that are used in the Cr and Ce slots in the entire data set.

• Step 2. Obtain co-occurrence frequencies of the nouns with 5000 most frequent lexemes in the BNC
 - BOW4: all words in the window 4 words on the left from the target noun and 4 on the right.
 - BOW15: the same, but the window is 15.

• Step 3. Transform the co-occurrence frequencies into Positive Pointwise Mutual Information scores.

• Step 4. Compute the distances between all pairs of word vectors as $\text{dist}_{AB} = 1 - \cos(A, B)$.
Models for Cr and Ce

- Step 5. Use Partitioning Around Medoids clustering method to classify the nouns into n clusters (from 2 to 20).
Models for Cr and Ce

- Step 5. Use Partitioning Around Medoids clustering method to classify the nouns into n clusters (from 2 to 20).
- Step 6. Compute goodness-of-fit measures of a classification model (SVM, multinomial regression) for every clustering solution, i.e. how well every solution helps us predict the choice between let, allow and permit.
Classes of Cr

Permitter

accuracy

n of clusters

BOW4
BOW15
Cr: BOW15, 7 clusters
Cr: Interpretation of clusters

• Cluster 1 (pro-let)
 person’s names (John, Juliet, Miranda, Shakespeare, BBC, Bundesbank) and animate common nouns: athlete, boss, countess, student, Masai, successor, champion, king, governor...

• Cluster 3 (pro-permit)
 legalese: clause, act, argument, certificate, convention, court, document, judge, landlord, law, magistrate, verdict, warrant...

• Cluster 5 (pro-let)
 animate nouns (esp. family): mother, father, daughter, doctor, female, lad, lady, people, person, pervert, teacher, thief, husband...

• Cluster 7 (pro-allow)
 abstract and scientific: addition, adjustment, procedure, result, solution, method, machinery, sampling, science, theory, variation, language, data...
Classes or Ce
Ce: BOW4, 7 clusters
Ce: Interpretation of clusters

• Cluster 2 (pro-let)
 Humans: American, attacker, daughter, Dane, maniac, murderer, pilot, prince, stranger, youngster...

• Cluster 4 (pro-permit)
 Public sphere: court, infringement, radical, regime, inspector, resident, republic, suitor, tax, employer, elite, minority, education, department...

• Cluster 5 (pro-let)
 Physical objects, esp. body parts: arm, bone, breast, eye, finger, foot, hand, head, throat; bed, axe, barbell, blade, pedal, pencil, ring, table...

• Cluster 6 (pro-allow)
 Abstract entities: beauty, behaviour, belief, bequest, boundary, brokenness, capacity, case, celebration, fertility, feeling...
Cr and Ce: conclusions

- two dimensions:
 - Dim 1: animate – material – abstract
 - Dim 2: Subject domain plays a role (‘general’, science, law/public)
Since syntactic information has been crucial for verb classes induction (Schulte im Walde 2009), I fit four models based on syntactic information.

- Based on a segment of the BNC (15%) parsed with Stanford Parser.
- Examples of relations: nsub, dobj, iobj, prep, acomp, ccomp
- Models:
 - synt_all (occurrence in any of syntactic relations where a verb can occur)
 - Synt10 (occurrence in top 10 most frequent relations)
 - subcat_all (occurrence in all possible subcategorisation frames found in the corpus)
 - subcat20 (occurrence in top 20 most frequent subcategorization frames)
Classes of V_{inf}

![Diagram showing the effect of different classes on accuracy for varying numbers of clusters. The legend indicates lines for synt10, synt_all, subcat20, and subcat_all, with accuracy values hovering around 0.6 across different cluster counts.](image)
Vinf: synt_all, 20 classes
Vinf: Interpretation of clusters

• Cluster 15 (pro-let):
perception and other mental verbs: see, know, think, understand, believe, hear, realize, wonder, recall...

• Cluster 5 (pro-let):
basic physical states and activities, mostly intransitive: stand, sit, lie; go, walk, come, fly, fall, jump, pass; linger, stay; keep, become...

• Cluster 13 (pro-let):
basic causative verbs, physical actions: build, draw, get, break, hold, fold, dig, spill, pick, wash, summon, fasten...

• Cluster 2 (pro-permit):
icorporate, relinquish, describe, inspect, reveal, ignore, digress, translate, interpret, suspend, satisfy, delve, engage...
Vinf: conclusions

• Some classes are similar to Levin’s, although not all.
• Again, the domain plays a role.
DISCUSSION
Conclusions: theory

• The iconicity-based theory about the conceptual difference between *let* and *allow/permit* (conceptual cohesion) is supported by the multivariate analysis.
Conclusions: theory

• The iconicity-based theory about the conceptual difference between *let* and *allow/permit* (conceptual cohesion) is supported by the multivariate analysis.

• However, this is only one of many factors that constrain the use of the constructions.
Conclusions: method

• The multidimensionality of the differences between the Cxs is reflected in the distributional SVS-based classifications of constructional collexemes.
Conclusions: method

- The multidimensionality of the differences between the Cxs is reflected in the distributional SVS-based classifications of constructional collexemes.
- The ‘flat’ clustering approach tested here is probably not the optimal one. One might want to use dimensionality-reduction methods to pin down the relevant dimensions (similar to LSA) and combine these dimensions in a multivariate analysis.
Channel, domain & horror aequi
Collocational entrenchment (MS)
Semantics of Causer

![Graph showing 95% confidence intervals for CrSem variables with two verbs, allow and permit.](image-url)
Semantics of Causee
Length and frequency of Vinf

[Graph showing 95% Confidence Intervals for Nchar and log(VFreq) with different colored lines for 'allow' and 'permit'].

Mean values are plotted on the x-axis, and the variables are on the y-axis.
Conceptual Cohesion and Linguistic Distance
Polarity and TAM

95% Confidence Intervals, Polarity and Morph

Variable

PolarityNeg
MorphPrSimple
MorphProgr
MorphPerf
MorphPastSimple
MorphNonFin
MorphIrrealis

Verb

allow
permit

Mean
MS: Highest-ranking infinitives

<table>
<thead>
<tr>
<th>Rank</th>
<th>LET</th>
<th>ALLOW</th>
<th>PERMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>go</td>
<td>escape</td>
<td>inspect</td>
</tr>
<tr>
<td>2</td>
<td>know</td>
<td>enter</td>
<td>delegate</td>
</tr>
<tr>
<td>3</td>
<td>pass</td>
<td>proceed</td>
<td>adduce</td>
</tr>
<tr>
<td>4</td>
<td>finish</td>
<td>continue</td>
<td>derogate</td>
</tr>
<tr>
<td>5</td>
<td>touch</td>
<td>choose</td>
<td>discontinue</td>
</tr>
<tr>
<td>6</td>
<td>forget</td>
<td>develop</td>
<td>quantify</td>
</tr>
<tr>
<td>7</td>
<td>happen</td>
<td>operate</td>
<td>re-finance</td>
</tr>
<tr>
<td>8</td>
<td>stay</td>
<td>gain</td>
<td>track</td>
</tr>
<tr>
<td>9</td>
<td>die</td>
<td>pass</td>
<td>flourish</td>
</tr>
</tbody>
</table>